What the Wave of Retiring Machinists Means to Plant Safety

Within the next decade approximately 2.7 million “Baby Boomers” (b. 1946-1964) will retire, thereby ensuring that tens of thousands of skilled, well-paid positions will become available without a ready supply of American workers to fill them. Statistics paint an especially gloomy picture for the manufacturing sector, a widening of the skills gap, and a possible dilution of existing training programs.

Compared to the rest of the economy, the impact on manufacturing of this generational shift is oversized owing to two factors:

  • One, despite increased efforts by colleges and vocational schools to train new manufacturing workers, available jobs still outpace qualified employees.
  • And two, the existing manufacturing workforce is considerably older than the national employee average of 42 years. Currently, the average age of highly skilled manufacturing employees is 56, and nearly a third of all manufacturing professionals are over 50. As they retire, knowledge goes out the door with them.

What are the implications of these trends for your plant’s productivity? How will it impact employee safety? What can you do to transfer knowledge from one generation to the next?

Safety Knowledge Gap

Besides having less experience operating machinery correctly, workers new to the job are often unsure about their safety rights and responsibilities, or might feel uncomfortable speaking out about a potential hazard. They may also not have the proper training, so they underestimate the risks involved with operating high-speed machinery. A recent survey of machinists in North America exposed that 70% couldn’t recall receiving any formal training when they were first hired on.

Equally troubling, the Millennials (b. 1980-1996), who are replacing baby boomers, are more apt to job hop — 90 percent expect to stay in a job for less than three years — leaving manufacturers with heightened turnover and a badly depleted knowledge base, especially when it comes to safety. The so-called “Great Resignation,” the unprecedented mass exit from the workforce spurred on by Covid-19, also has reduced the pool for skilled labor.

Given all this, it probably comes as little surprise that employees under the age of 25 are twice as likely to visit the emergency room for an occupational injury than those over 25. The dangers facing younger workers underscore the critical importance of machine safeguarding. The lathe, press or saw on the plant floor considered “safe” solely on the basis of being accident-free for many years is no guarantee that modern safety regulations and standards are being met. A machine mistakenly perceived as “safe” may be the most dangerous in your maintenance shop, or on your production floor.

Safeguarding Assessment

Faced with the wave of Baby Boomer retirements, many manufacturers are trying to hold on to their older workers, persuade some to return after retirement, or recruit those retired from other companies. Unfortunately, these steps only postpone the inevitable. A more meaningful first step is to conduct a thorough machine safeguarding assessment on your machinery.

A machine safeguarding assessment draws on the expertise and experience of an outside company to identify and address machine hazards before they cause accidents. Over the course of a machine safeguarding assessment, detailed information is collected concerning each machine, how the operator interacts with the machine, and the process it is tied to. Hazardous areas are pinpointed on the machine and a hazard level assigned to each machine. Evaluating this hazard level helps determine which safeguarding methods should be applied to each machine to make it safe. If a risk is not tolerable, safeguarding measures need to be applied that will reduce the risk to an acceptable level that is in accordance with applicable regulations and standards. The assessor should also accurately identify all costs associated with the final project. After installing safeguards, a follow-up assessment will be conducted to verify that risk levels have either been eliminated, or reduced to a tolerable level.

Transferring Tribal Knowledge

Retirees won’t leave behind every bit of knowledge they’ve gained over the years, but capturing a majority of the important operational details will be beneficial down the road. Your organization needs to find ways of both learning and sharing this “tribal” knowledge before experienced machinists retire.

One common way of doing so is implementing a structured training and mentoring program pairing young workers with senior people who are technically expert in complex machinery. Along with face-to-face training on the machinery, the experienced worker is there to answer questions about operating procedures, and to help the young worker learn how to operate the machinery correctly. Recognizing hazards and learning safe work practices must be a central part of training and mentoring programs so make sure they are given equal billing with productivity during conversations. Training and mentorship also play an important role in informing young workers about OSHA, every worker’s right to a safe workplace, as well as the right to refuse unsafe work. Once retired, the mentor can return on a part-time or as needed basis to continue training new hires.

Outside Training

While older machinists certainly have the experience and technical knowledge, they may not know how to teach because they aren’t professional trainers or they can’t communicate effectively with a younger generation. Others may feel that training is an additional obligation that has been hoisted upon them when they are already crunched for time.

Hiring an outside firm to teach your team about machine safety regulations and standards is another step toward overcoming dilution in training. Rockford Systems offers a variety of safety training courses, including Machine Safeguarding Seminars, Combustion Safety Training, NFPA 70E and other courses at its Training Center in Rockford, Illinois. The popular 2-day seminars combine classroom discussion with live demonstrations to give the hands-on experience that new employees need. Once the seminar is complete, the employee will be better able to interpret the OSHA 29 CRF and ANSI series standards as they relate to their specific machine applications and production requirements.

Can’t make it to Rockford? No problem. The seminars can be presented at your company and tailored to the types of machinery found at your plant.

Annual Audits

Rockford Systems also offers an Annual Verification Audit to verify that your properly safeguarded equipment is being used as intended to protect employees working in dangerous environments. Moreover, the audit ensures that your capital investment in providing a safe working environment is sustained and continues to be in compliance with OSHA regulation and ANSI B11 series standards, as well as meeting any internal safety policies that a company may have established.

The primary evaluation criteria for the audit are visual inspection and function testing of safeguarding, controls, disconnects, motor starters, and mechanical power transmission apparatus covers. Once an audit is completed, Rockford Systems identifies issues in a detailed report highlighting deficiencies or changes from the original project specifications and recommendations for corrective actions to bring the equipment back into compliance.

Final Thoughts

A perfect storm has formed, making it increasingly difficult for manufacturers to find and train labor. The retirement of tenured and experienced machinists only makes matters more challenging. To ensure plant productivity and safety needs are continuously met despite retirements, take proactive steps through working to develop and promote training and mentorship programs, properly safeguarding your machinery, and conducting annual verification audits to ensure that your safety program is being followed as intended.

For more information, visit www.rockfordsystems.com

 

Do’s and Don’ts of Safely Using Bench Grinders

Statistics indicate half of grinder accidents result from operator error

Because grinders are commonly used machines in workplaces nationwide, many workers become complacent about their hazards. However, grinders are very dangerous when used improperly. In fact, statistics show that more than half of grinder injuries are the result of operator error. Rockford Systems, LLC, a premier provider of machine safeguarding products and services, offers this primer on grinder safety regulations to help prevent accidents and even fatalities.

First off, it is important to be fully versed in the regulations that outline safe grinder installation, maintenance and operation. The workplace regulations that apply to grinders are OSHA 29 CFR SubPart O 1910.215, a “machine specific” (vertical) regulation with a number of requirements, which if left unchecked, are often cited by OSHA as violations. ANSI B11.9-2010 (Grinders) and ANSI B7.1 2000 (Abrasive Wheels) are consensus standards that also apply. Carefully review these regulations and standards before operating any grinding machinery.

Work-Rests and Tongue-Guards 

OSHA specifies that work rests be kept adjusted to within 1/8-inch of the grinding wheel to prevent the workpiece from being jammed between the wheel and the work rest, resulting in potential wheel breakage. Because grinders run at such high RPM, wheels can  shatter when they break, causing very serious injuries, blindness and even death. In addition, the distance between the grinding wheel and the adjustable tongue guard — also known as a “spark arrestor” — must never exceed 1/4-inch. Because the wheel wears down during use, both of these dimensions must be regularly checked and adjusted.

Grinder safety gauges can be used during the installation, maintenance, and inspection of bench/pedestal grinders to ensure work-rests and tongue-guards comply with OSHA’s 1910.215 regulation and applicable ANSI standards. To do so, wait until the grinding wheel has completely stopped and the grinder is properly locked out before using a grinder safety gauge. Grinder coast-down time can take up to several minutes, which may tempt an impatient employee to use the gauge while the wheel is still rotating. This practice is very dangerous because it can cause wheel breakage.

Other advice: where grinders are concerned, personal protective equipment (PPE) usually means a full face-shield, not just safety glasses. The fact is, an employee cannot be too careful with a machine that operates at several thousand RPM. Remember to document any safety requirements set forth by OSHA as that is the best evidence that safety procedures are being followed.

Ring-Testing

OSHA requires that grinding wheels be ring tested before mounting them. This simple step prevents the inadvertent mounting of a cracked grinding wheel. Ring-Testing involves suspending the grinding wheel by its center hole, then tapping the side of the wheel with a non-metallic object. This should produce a bell-like tone if the wheel is intact. A thud, or a cracked-plate sound, indicates a cracked wheel. For larger grinders, grinding wheels are laid flat on a vibration-table with sand evenly spread over the wheel. If the wheel is cracked, the sand moves away from the crack.

To prevent cracking a wheel during the mounting procedure, employees must be very carefully trained in those procedures. This starts with making sure the wheel is properly matched to that particular grinder, using proper blotters and spacers, and knowing exactly how much pressure to exert with a torque-wrench, just to mention a few things.

Wheel Covers 

This OSHA-compliant Wheel-Cover allows no more than a total of 90 degrees of the wheel left exposed. (65 degrees from horizontal plane to the top of wheel-cover). Never exceed these wheel-cover maximum opening dimensions. Larger wheel-cover openings create a wider pattern of flying debris should the wheel explode.

A well-recognized safety precaution on bench/pedestal grinders is to stand well off to the side of the wheel for the first full minute before using the machine. Accidents have shown that grinding wheels are most likely to shatter/explode during that first minute. OSHA Instruction Standard #STD 1-12.8 October 30, 1978 addresses the conditional and temporary removal of the “Work Rest” for use only with larger piece parts based on the condition that “Side Guards” are provided.

Grinder Do’s

  • Always handle and store wheels in a careful manner
  • Visually inspect all the wheels before mounting for possible damage
  • Make sure operating speed of machine does not exceed speed marked on wheel, its blotter or container
  • Check mounting flanges for equal size, relieved as required and correct diameter
  • Use mounting blotters when supplied with wheels
  • Be sure work rest is properly adjusted on bench pedestal and floor stand grinders
  • Always use safety guard that covers a minimum of one-half the grinding wheel
  • Allow newly mounted wheels to run at operating speed, with guard in place, for at least one minute before grinding
  • Always wear safety glasses or some type of approved eye protection while grinding
  • Turn off coolant before stopping wheel to avoid creating an out-of-balance condition

 

Grind Don’ts

  • Don’t use a wheel that has been dropped or appears to have been abused
  • Don’t force a wheel onto a machine or alter the size of the mounting hole – If a wheel won’t fit the machine, get one that will
  • Don’t ever exceed maximum operating speed established for the wheel
  • Don’t use mounting flanges on which the bearing surfaces are not clean, flat And smooth
  • Don’t tighten the mounting nut excessively
  • Don’t grind on the side of conventional, straight or Type 1 wheels
  • Don’t start the machine until the safety guard is properly and securely In place
  • Don’t jam work into the wheel
  • Don’t stand directly In front of a grinding wheel whenever a grinder is started
  • Don’t grind material for which the wheel Is not designed

 

Rockford Systems offers a wide variety of safeguarding products for grinders including motor starters, disconnect switches, and shields.

For more information, visit www.rockfordsystems.com.

Machine Risk Assessment vs. Safeguarding Assessment? Start 2021 off on the right safety foot.

When it comes to accidents, manufacturing ranks second highest of all industries. That comes despite OSHA regulations and American National Standards Institute (ANSI) standards. A key culprit is unguarded hazardous machinery.

Year after year, OSHA issues thousands of citations and levies millions of dollars in fines for machine safeguarding violations in an attempt to prevent injuries and save lives OSHA 1910.212(a)(1) is the most common section citation, whereby “one or more methods of machine guarding shall be provided to protect the operator and other employees in the machine area from hazards” followed by OSHA 1910.212(a)(3)(ii) whereby “the point of operation of machines whose operation exposes an employee to injury shall be guarded.

Why the disregard?

Why is this so? Often facility safety managers are lulled into a false sense of security because a serious accident has not yet occurred or because accidents are rare in their facility. Other managers might wrongly suppose that their newly purchased machinery arrives fully compliant, not realizing that OEMs are typically concerned with new machinery price competitiveness, not necessarily guarding compliance. Still other managers may wrongly assume that older machines are “grandfathered in” before OSHA was formed.

For whatever reason, approximately HALF of industrial machinery has not been properly safeguarded.

That is the bad news.

The good news is there is a way to determine compliance through an assessment of the machinery on the plant floor, as outlined by ANSI B11.0. There are two types of assessments that reign supreme: the Risk Assessment and the Safeguarding Assessment. This article will address both methods and how they help an organization better protect the people operating the machines and reduce the risk at the facility.

Risk assessments should be conducted annually, including whenever a new machine is installed or a major change to an existing machine or production line has taken place. Additionally, in an ideal world, a pre- and post-assessment would be done to verify that the hazards identified in the assessment were properly mitigated.

Risk assessment

What a risk assessment is comprised of is outlined in ANSI B11 Series Standards for Industrial Machinery, ANSI/RIA R15.06-2012 Safety Standards for Industrial Robots, and the National Fire Protection Association (NFPA) 79-2015 Electrical Standard for Industrial Machinery.

The overarching goal of a task-based risk assessment is to identify hazards associated with machinery or robots. This requires an on-site visit by a risk assessment professional who audits and assigns each machine a risk rating based on three considerations: Severity of Injury, Exposure Frequency, and Avoidance Likelihood, which produces a Risk Level. Today’s risk assessment specialists use software-based tools that can make the process quicker than working through a pen-and-paper risk assessment form.

In advance of the facility visit and based upon project scope, the risk assessment specialist will need to review a comprehensive machine list and potentially other documentation such as: corporate safety standards, lockout/tagout (LOTO) procedures, electrical and mechanical drawings, floor-plan layout and equipment manuals.

The scope of assessing a piece of machinery for risk begins with reviewing its operational states with functionality tests performed to help identify potential hazards during machine start-up, cycle, and stopping. The risk assessment specialist may perform a Stop-Time Measurement (STM) test to determine the machine’s reaction time after receiving a stop signal to ensure proper safety distance of safeguarding devices. The specialist will also establish if a passerby or other employees in the area could be hurt if an incident occurs, in addition to the operator.

Along with assessing the production risks of the machine, the risk assessment specialist must analyze the tasks performed by the machine operator as they relate to interacting with the machine, loading and unloading materials, planned and unplanned maintenance methods, frequency of tool changes, and general housekeeping.

During the risk assessment, the specialist will photograph machines and generate a final hazard report documenting their assessment findings and risk levels. The hazardous findings of each machine are broken down into the following ranked classifications:

Critical: There is an imminent life-threatening or dismemberment hazard and immediate action is needed to reduce risk and improve operator safety
Mandatory: There is an imminent hazard that creates potential for injury and action is required to reduce risk, improve operator safety and to comply with OSHA/ANSI standards
Compliant: There is not a recognized hazard that creates potential for injury and no action is required.

Safeguarding assessment

While a risk assessment helps to identify a problem, it does not provide specific safety solutions nor cost estimates. For that, a safeguarding assessment is needed.

During the safeguarding assessment, a specialist will visit the site and conduct an intensive audit of each machine and identify compliance in five guarding areas: safeguards, controls, disconnects, starters and covers. The safeguarding specialist may request copies of electrical, pneumatic or hydraulic schematics, operator manuals and ask for control panel access so that engineers can review the control circuit for electrical compatibility of any proposed safeguarding solutions and to verify reliability of the control circuit to determine the interfacing requirements of suggested equipment. Then the safeguarding specialist will focus on risk reduction using this basic methodology:

– Eliminate Access — A good safeguarding system eliminates the possibility of the operator or other workers placing parts of their bodies near hazardous moving parts.
Reduction in Exposure — A machine safeguard should not be able to be removed, bypassed or tampered with by the operator. To minimize risk exposure, all guards and devices must be securely mounted at the point-of-operation and durable enough to withstand industrial environments, vandalism and heavy usage.
– Create No New Hazards — A safeguard defeats its own purpose if it creates a hazard of its own such as a shear point, a jagged edge, or an unfinished surface which can cause a laceration. The edges of guards, for instance, should be rolled or bolted in such a way that they eliminate sharp edges.
– Create No Interference — Any safeguard which impedes a worker from performing a job quickly and comfortably might soon be overridden or disregarded. Proper safeguarding can actually enhance efficiency since it can relieve the worker’s apprehensions about injury.
– Allow Safe Lubrication — Locating oil reservoirs outside the guard, with a line leading to the lubrication point, will reduce the need for the worker to enter the hazardous area.
Administrative Controls — Without administrative oversight and supervisory control, a machine safeguarding program will fail. Training is key to establishing a safety culture. Operators need to trained to follow the Standard Operating Procedures provided by the machine manufacturer in order to reduce hazards and related risks.

Uncovering gaps in protection

Unlike a risk assessment, a safeguarding assessment recognizes both the problem and the solution. A final compliance report and safeguarding project proposal is issued to facility management which identifies deficiencies or gaps where each machine is not in compliance with current or specified regulations and standards. When not in compliance, the proposal offers standard and customized safeguarding solutions, along with associated costs and timelines to help bring machines into compliance and reduce risk. Each proposed solution is carefully weighed against factors such as risk-reduction benefit, productivity, technological feasibility, economic impact, and maintainability.

In this way, a machine safeguarding assessment follows the OSHA/ANSI approach to controlling machine hazards: eliminate the hazard by design; or control the hazard by guarding, posted warnings, personal protective equipment, and employee training.

Risk reduction strategies

When evaluating risk reduction solutions to address identified hazards, consider each machine and its unique risks. Three basic methods are available.
– Eliminating or reducing risks to a “tolerable” level by installing a new, inherently safe machine. Please note that what constitutes “tolerable” to one company is not necessarily tolerable to another.
– Installing the necessary safeguarding equipment on an existing machine to minimize risks that cannot be eliminated. Fixed enclosing guards, protective devices such as light curtains, palm buttons or presence sensing mats, and training on the safe working methods of the machine are all necessary to reduce injury risks.
– Changing the production process to eliminate the hazard. Perhaps the operator performs actions that increase his exposure to serious hazards? Or recent changes upstream have created a more dangerous environment? Even a small change in procedures can make for a safer, more efficient operation.

Conclusion

Both risk assessments and/or the safeguarding assessments are critical first steps in any machine or robot safeguarding project as outlined in ANSI B11 Series Standards for Metalworking, OSHA 1910.212 General Requirements, ANSI/RIA R15.06-2012 Safety Standards for Industrial Robots and NFPA 79. These standards pave the way for risk-reduction measures that are both effective and economical. Machine risk assessments provide a comprehensive hazard analysis with a risk ranking; machine safeguarding assessments identify safeguarding solutions and provide cost estimates for implementation. Which one is right for an organization depends upon the specific needs of the organization, the organization’s objectives, desired outputs and risk levels.

Related Blogs:

Machine Risk Assessment Process

Machine Safeguarding Assessment

Machine Risk Assessment

Machine Risk Assessment – Inquiry Confirmation

Remote Safeguarding Assessment

Calculating a Safeguarding ROI

In the United States, workers operating or maintaining industrial machinery suffer more than 18,000 amputations, crushed fingers and other traumatic injuries each year. While these injuries vary greatly, the majority of cases do have one thing in common: the injury was largely preventable if machine safeguarding equipment had been in-place, or would have been far less severe.

Many employees, unions and worker advocates may well ask, “Why do we need a safeguarding business case?” “Don’t employers have a responsibility for providing a safe and healthful workplace for their employees?” Although U.S. organizations understand that machine safeguarding is the law and that protecting human life is socially responsible, each company must answer the return on investment (ROI) question their own way. Where does safeguarding fit into a business strategy? Can safeguarding be quantified by using cost-benefit financial analysis? To get to those answers we need to look at both sides of the ledger, comparing the cost of an accident versus the cost of preventing it.

WHAT DOES A MACHINE ACCIDENT COST?
Insurance studies indicate machine safeguarding provides an opportunity for businesses to reduce bottom-line operating costs by eliminating both the direct and indirect costs of an accident, while improving productivity and employee morale. But just how much can be saved? Liberty Mutual reported in its annual Workplace Safety Index that U.S. employers spent $48.6 billion for wage and productivity losses, medical expenses and administrative expenses for workers hurt on the job. This is roughly equivalent to the annual sales of Cisco, Pfizer or FedEx. A study by Colorado State University set the total direct and indirect cost of workplace injuries at a staggering $128 billion.

Safeguarded Press

Direct costs of an accident refer to out-of-pocket expenses like hospital and medical bills. They also include the loss of a worker’s time because of the accident, the lost productivity by the machine involved in the accident being idled or requiring repairs, as well as the other machines further down the production line being shut down. Costs continue to cascade throughout the company with overtime required to make up the lost productivity and new workers who need to be hired and trained. The National Safety Council (NSC) estimates that lost time alone associated with the average injury costs nearly $30,000.

However, costs related to an injury do not end there, as an accident will influence indirect costs far outside company walls. Analysis of most accidents reveal that the actual total cost can range from four to ten times the visible, direct cost stated by an insurance company. For example, a single accident can result in OSHA fines up to $100,000 per machine or more if the violation is found to be willful. In 2010, 24 percent of OSHA’s Top 10 citations for manufacturing dealt with machine guarding violations, resulting in more than $6 million in proposed penalties. In addition, insurance rates can rise dramatically or coverage can be dropped entirely. Investments targeted for company growth may need to be diverted to cover the costs of the accident, while employee morale and productivity can experience a significant drop, and the company’s brand and reputation will likely be damaged by negative publicity. Finally, there are the legal fees, plus management time spent dealing with regulators and attorneys.

Safeguarded Mill Drill
And while it is not calculated as an indirect cost, a poor safety record can make the difference between a company winning and losing bids, especially with government contracts. A plant with a singularly bad reputation for safety may also find itself unable to attract workers at all or may have to pay wages well above market value to do so. Also, if the machine where a serious accident occurred is unique and is locked out for investigation or until the safeguarding deficiency is abated, the company may need to outsource the work at a much higher cost. It’s also possible that the work is so specialized that it’s impossible to outsource and therefore the company loses the business.

DO THE MATH
OSHA’s $afety Pays website (www.osha.gov/dcsp/smallbusiness/safetypays) makes it easy for organizations to calculate direct and indirect costs of an accident. As an example, let’s assume a fictional company with annual sales of $5 million and an 8% pre-tax profit margin has an accident involving an employee whereby his hand was entangled in a drill press.

By using insurance company claims data, $afety Pays can calculate that the crushing accident will cost that company, on average:
• Direct Cost: $56,557
• Indirect Cost: $62,212
• Estimated Total Cost: $118,769

Safeguarded Lathe
By entering profit margin information, $afety Pays will also project the additional sales required to recover the costs of the injury. In this instance, additional sales revenue necessary to cover costs is $1,484,612 based on the 8% profit margin or approximately one third of annual sales. If pre-tax margins are less, the sales impact is even greater.
On the other side of the ledger is the cost to safeguard the machine involved in the accident. For the purpose of this discussion, let’s assume that the same fictional company had an onsite risk assessment performed by a reputable firm that surveyed ten machines on the plant floor at a cost of $5,000, or $500 per machine. Next, assume that the drill press had been safeguarded per OSHA regulations and ANSI standards at a total cost of $1,000. Adding in its prorated share of the risk assessment, total cost to safeguard the drill press would be $1,500, a figure that compares very favorably to the estimated $118,769 cost of the accident.

HUMAN CAPITAL AS ROI
A poll by Liberty Mutual Group insurance showed that the majority of executives surveyed (61%) reported that for every one dollar spent on safety, three dollars is saved. And nearly all (95%) said workplace safety had a positive effect on financial performance. OSHA estimates a 6:1 ratio for saved dollars for every one dollar invested in safety, twice Liberty Mutual’s 3:1 ratio.

Of course, if a company could be guaranteed a positive return on their safety investment, more than half the machines in the United States today would not be operating unprotected. Convincing upper management to commit tens of thousands of dollars on machine safeguarding when a return may not be seen for years can be a hard sell. In this situation, safety professionals should stress that although cost savings are a motivator, safety’s biggest ROI comes in the form of human capital. Money savings from fewer injuries, increased productivity, and higher morale are all additional benefits.

CONCLUSION
Whether driven by the law or social responsibility or the need for a positive ROI, most organizations embark on a quest to make their workplaces safe. The business case for machine safeguarding is solid. By comparing the installation cost of safeguarding over the productive life of a machine versus the direct and indirect costs of even a single accident, it becomes clear that safeguarding makes sound business sense and should be a cornerstone of an organization’s safety goals and objectives.