Ten Tips for Safeguarding Your Shop’s Metal Lathes

Operators of lathes are one of the largest machine worker populations in the United States, estimated to account for over 140,000 machinists. Of this population, approximately 3,000 suffer lost-time injuries annually in the United States. Some of these are fatal. These accidents occur in large industrial settings and factories, as well as in much smaller machine shops. No lathe operator is immune from an accident.

Operating a manual metal lathe, in particular, presents a number of hazards. For one, the lathe’s rotating parts easily can catch hair, jewelry and clothing, entangling the operator and resulting in severe and life altering injuries. Entanglement is also a risk whenever lathe operators use emery paper to sand or polish a rotating shaft. Without warning, the paper may wrap itself around the shaft, entangling the operator’s gloved hand, hair or loose clothing at over 300 RPM. Second, flying hot metal chips and coolant present serious risks if the machine’s guards or the operator’s PPE does not protect them effectively. Other risks include a work piece kicking back at the operator, slip-and-fall accidents due to coolant spilled on the floor, and parts or materials, such as chuck keys or unsecured work pieces, being projected at high speed and striking the operator and nearby employees. There have been lathe accidents recorded due to something as minor as the flashing effect of fluorescent light that can make a spinning lathe appear to have stopped.

Research shows there are numerous factors that can lead to a lathe accident. At the top of the list are malfunctions due to defective machinery, the failure to install proper safeguarding, mistakes due to the lack of employee training, poor lighting, and not providing proper PPE.

What does a metal lathe do?
A manual metal lathe is a precision turning machine that rotates a metal rod or irregular-shaped material while a tool cuts into the material at a preset position. Similar to a wood lathe, the metal lathe normally consists of a headstock and base that houses one or more spindles on which a work holding device or “chuck” can drive the stock while cutting tools remove metal, producing mainly cylindrical and conical shapes.

Operator Training & PPE
First and foremost, lathe operators must be trained and held accountable for following safe work practices. This is essential in avoiding injury. Examples of lathe machine safety precautions include not wearing loose clothing, rings and other jewelry, keeping long hair pulled back while operating a lathe and keeping hands and fingers away from rotating parts. As mentioned earlier, these practices are important because rotating parts will catch loose or dangling items and pull the operator into the machine, causing serious injuries or death.

OSHA makes it the responsibility of the employer to provide training that addresses safe start-up and shutdown as well as proper machine operation, speed adjustments and work piece placement, control and support. Employers must also equip lathe operators with proper PPE that includes safety glasses or other suitable eye protection, earplugs, protective footwear, and close-fitting clothing.

Safeguarding Standards for Lathes
There are no OSHA regulations specifically for lathes. Instead, OSHA considers lathes to be a 1910.212 machine, saying to the employer, “One or more methods of machine guarding shall be provided to protect the operator and other employees in the machine area from hazards such as those created by point of operation, ingoing nip points, rotating parts, flying chips, and sparks” … but 1910.212 requirements are vague because they cover such a wide variety of machinery. Therefore, a reference to something more detailed, like the “appropriate standard” ANSI B11.6-2001, Safety Requirements for the Construction, Care, and Use of Lathes, is required for specific safeguarding alternatives. Section 5 of this standard contains the safeguarding requirements on metalworking lathes.

An important standard that ANSI B11 standards reference is ANSI/NFPA 79, Electrical Requirements for Industrial Machinery. It provides detailed information for the application of electrical/electronic equipment, apparatuses, or systems supplied as part of industrial machinery, including lathes. This standard addresses such issues as requirements for operator controls, emergency-stop devices, disconnect switches, motor starters, and protective interlocks.

Of course, even properly installed safeguarding equipment can’t protect a machinist who “works around” the safeguarding, lifting a guard, for example, to accomplish a task. Thankfully, most shields can be interlocked with the machine’s electrical system to prevent operation when they are not in place. Swinging a shield from its protective position will break its electrical connection and cut the power, forcing a quick coast down.

A lathe has several points of operation that present hazards. Each requires specialized safeguarding equipment. Below we address each of these hazards and what can be done to avoid accidents.

1. Safeguarding the Chuck
The chuck area is by far the most dangerous area on a lathe. From a practical standpoint, a rotating chuck cannot be fully enclosed — unlike gears, sprockets, or chains that usually are completely covered, often by the OEM. However, that same lathe manufacturer may not provide safeguarding at or near the point of operation although, according to 6.21 of ANSI B11.6, manual lathes must be safeguarded with a chuck guard and chip and coolant splash shields as required. In this case the employer is responsible.

Hinged chuck-shields are one of the most common methods to protect lathe operators from the rotating work-holder. Their purpose is to prevent an operator from inadvertently coming in contact with the chuck, which often results in entanglement, serious bodily injury or even death. Chuck shields are commercially available from numerous providers. They may be constructed of metal, polycarbonate, or some combination of materials. When not in use, they need to be swung up out of the way, so most are hinged. Same for during set-up.

Although U.S. Safety Standards and Regulations do not require chuck-shields to be interlocked, some European and Canadian manufacturers offer that feature. With electrically interlocked shields, when the lathe chuck shield is lifted up, the positive contacts on the microswitch open, sending a stop signal to the machine control. The machine will not start up again until the emergency stop button has been reset.

A common complaint against chuck shields is that they limit visibility due to light reflecting off the shield, or that obstruct their view to the work piece. To overcome these problems a clip-on lamp is sometime installed yet these can easily overheat. A far better solution is newer shields featuring built-in bright LED lighting that yield better visibility without shadows or heat build-up.

2. Sanding Belt Holder
Hand sanding and polishing metal shafts on the lathe with an emery cloth has resulted in numerous injuries. Emery cloth and gloves can easily be caught on the shaft, pulling the operator’s hand and arm on the shaft. An automatic sanding belt holder enables lathe operators to sand, polish and debur hands-free, keeping them a safe operating distance away from the spinning shaft and preventing entanglement. It typically fixes to existing tool-case turrets.

3. E-Stops
American National Standards Institute (ANSI) standards state that an emergency-stop or “e-stop” is required on any machine that will tolerate a quick stop. Some lathes have a true e-stop built in to halt operation in less than a second, but most require several seconds to cease functions. An electronic motor brake can improve coast-down time, in some cases from 15 seconds to 3 seconds, which can make a significant difference in an emergency.

Per NFPA 79, the e-stop must be a red with a yellow background, and have a mushroom-shaped button with a manual latch that keeps it down once it is pushed to prevent machine operation by the regular controls. Once the e-stop is engaged, the latch keeps it down until a manual quarter-turn releases the latch and allows the machine’s controls to again command the machine’s actions. Kick plates or grab-wires that go across a machine can facilitate an emergency shutdown if there is potential for an operator’s hands to be caught.

E-stops need to be readily accessible. An e-stop button should be within easy reach at each location on the machine that requires operator interaction. When more than one individual is involved, each person should have his or her own e-stop.

4. Chip/Coolant Shields
The long stringy chips produced when turning steel can wreak havoc on an operation and production. Edges of the chips are scorching hot and extremely sharp putting the operator at risk for injury, as well. Chips can strike the operator in the upper body or accumulate on the floor creating a slip-trip hazard.

As protection against chips, coolants, lubricant and sparks, lathes should be equipped with a chip and coolant splash guard, also known as a carriage safety guard. This type of guard can be electrically interlocked like a chuck shield, and gives added protection to the operator from direct contact with rotating components. Coolants are often overlooked as a hazard yet workers often are exposed through inhalation, ingestion, skin contact, or absorption through the skin, leading to burns and irritations. Without a chip/coolant shield, operators can also be at risk of inhalation of airborne substances such as oil mist, metal fumes, solvents, and dust.

It is rare for an OEM to include this type of shield on a new lathe. Again, it is the responsibility of the employer to install it before the lathe is put into commission.

5. Chuck Wrench
According to feedback from OSHA Compliance Officers and Insurance Loss Control Inspectors, one of the most common lathe accidents results from the misuse of standard chuck wrenches furnished by lathe manufacturers. When the lathe is not being used, a typical – and very unsafe storage place for the chuck-wrench is in the chuck. At some point in time, the operator turns the lathe on without checking to see where the chuck wrench is located, which projects it across the shop floor. Spring-loaded, self-ejecting chuck wrenches are a solution to this problem because they won’t stay in the chuck by themselves, helping to prevent a potential ejection hazard at machine start-up.

7. Magnetic Motor Starters and Disconnects
When updating an older lathe it is required practice to bring it up to code with current electrical standards like NFPA 79. This will require the installation of a motor starter and disconnect those only locks in the OFF position. When adding a motor starter, ensure it is magnetic to provide drop-out or “anti-restart” protection.

8. Telescopic stainless-steel sleeves
Although slow moving, horizontal rotating components in a lathe can entangle an operator and crush body parts with their tremendous torque. Installing telescopic stainless-steel sleeves will seal off their pinch-points plus protect the components from metal chips and other destructive contaminants. Unfortunately, operators complain that these devices are time consuming to install, need to be removed and cleaned regularly, and cause a loss in carriage travel. However, when compared to preventing a life-changing injury, these complaints are trivial in comparison.

9. Other Precautions
As with any machine, provision for Lockout/Tagout is always important with lathes. Danger and warning signs, depicting specific hazards on lathes, are also strongly recommended.

10. Conduct Machine Safeguarding Assessments
Machine Safeguarding Assessments are a critical step in any machine safeguarding process as outlined by ANSI B11, especially for companies deploying older or refurbished lathes. It is not unusual for lathes built in the 1940s to still be in active service, having been resold several times over the decades.

Odds that an older lathe is up to today’s safety standards are highly unlikely. Employers are often lulled into a false sense of security because a serious accident hasn’t occurred, or they may simply assume that the lathe they purchased, whether new or used, came equipment with all necessary safeguarding. The only way to take the guesswork out of compliance issues in your shop is a machine safeguarding assessment conducted by a qualified third-party, to help keep operators safe, machines productive and processes online. They will assign each machine a Risk Rating of 1 to 27, with 27 being the worst, based on three considerations: Severity of Injury, Exposure Frequency, and Avoidance Likelihood. When conducted by professionals, your machine safeguarding assessment will be delivered with a compliance report and a safeguarding project proposal that will detail the timing, costs and specific equipment required to bring machinery up to current standards.

Shield Against Debris

When a machinist is cutting, drilling, shaping or milling raw materials, there are always inherent risks. Thankfully, proper and up-to-date safeguarding equipment drastically minimizes the risks that machines pose. In this article, we look at one of the most basic and most critical components in machine safeguarding: the safety shield.

Before we start, we need to clarify the terms “guard” and “shield.” These are often used interchangeably when referring to safeguarding equipment, yet the two categories are very different. OSHA 29 CFR 1910.217 defines a guard as an enclosure that prevents anyone from reaching over, under, around, or through to a hazard.

Guards are used when a machine risk assessment shows a high level of exposure to recognized hazards. Shields, on the other hand, are designed for lower levels of exposures to hazards, while providing visibility into the point of operation. Shields typically have a transparent plastic panel with rugged framing, while a guard is solid metal, although it should be noted that not (not all shields have a framework, and that many industrial guards use aluminum for framework.).

Flying debris protection
The purpose of safety shields is to protect the machinist and bystanders from moving parts, flying debris, coolant, sparks, and other potential safety hazards by enclosing the danger (shields don’t enclose a hazard, they providing a barrier between plant personnel and the hazard) behind a rugged, impact-resistant panel. Shields attach to machinery, either temporally or permanently, fitting over blades, drills, lathe chucks, grinding wheels and other dangerous components (blades, cutting tools, chucks, grinding stones and other hazardous rotating components.).

Perhaps the greatest danger shields protect against is flying debris, an all-too-common occurrence in machine shops with the potential to bring about serious injury to an operator’s eyes, face, or body. The costs of a flying debris injury can add up quickly. Costs may include workers’ compensation claims, medical expenses, lost production time, and the possibility of permanent scarring and blindness.

For instance, consider an abrasive wheel grinder. Grinders are one of the most common pieces of machinery in maintenance shops, wheel grinders are powerful and designed to operate at high speeds. Depending on the equipment, the wheels can revolve at an incredible 10,000 surface feet per minute, and can loosen sharp chips or particles that can fly into an operator’s eyes or face. If a grinding wheel shatters while in use, the fragments can travel at more than 300 miles per hour directly at the operator, more than fast enough to penetrate the skull and cause traumatic brain injury. In situations like this a safety shield is the last line of defense against tragedy. (Our shields do NOT provide protection from catastrophic machine failure, which I would consider an exploding grinding stone) Even if the operator is wearing proper personal protective equipment, flying chips can cause life-threatening injuries without a shield installed. A shield can make the difference between a day that ends successfully and a day one that ends in the hospital.

Safety standards
Given their critical importance to operator safety, it is not surprising that ANSI, OSHA and other standards governing machine safeguarding heavily rely upon shields. Specific requirements largely depend on the type of machinery being safeguarded. Before installing a new shield on any machine the safety manager must ensure that the shield conforms to the appropriate, up-to-date standard for that machine.

Besides grinders, shields are typically installed on drilling machines, lathes, milling machines, band saws (saws), belt sanders, and disc sanders (sanding machines), and boring machines.. TheseThe seven (eight) machines represent over 95 percent of all shielding applications. Different standards outline the type of shield design and size that is allowed on each. In some cases, more than one type of shield per machine may be necessary to provide protection.

Types of shields
Shields come in dozens of designs, sizes and shapes. In their most basic form they can be broken out into fixed, portable, adjustable and interlocked categories, or a mixture of these features.

Fixed/portable
The most obvious characteristic of a fixed shield is that it is a permanent part of the machine. Tools are needed for its removal making it difficult to bypass. It is also not dependent upon other moving parts to perform its intended function, further increasing the protection. In contrast, a portable shield can be removed from the machine when not in use. Often, smaller shields will feature a pull magnetic base that attaches to a flat surface on the machine being safeguarded. Being removable, portable shields can be set aside for maintenance or moved to a similar machine. There are also large freestanding portable shields used to protect the area between machines, along aisles, or the backside of a machine.

Adjustable
An adjustable shield can be positioned for maximum protection during operation and swung out of the way for easy access to the workpiece and tooling. Types of adjustable shields are those mounted on brackets that allow for slide adjustments to fit workpieces; on steel ball-and-socket arms for simple movements and adjustments; or on flexible spring-steel arms offering virtually unlimited adjustment possibilities and long-term holding power.

Interlocked
Although not required, (I don’t like saying “not required” fiIt is best practices that sshields featuring movable parts that can be opened without using tools should be interlocked with the machine control system. The interlock prevents machines from starting until the shield is positioned safely in front of the hazardous area. Additionally, if the shield is moved away from the hazardous area while the machine is running, the interlock will send a stop signal to turn the machine off.

This way the hazards covered by the shields will be effectively controlled if the shield is opened and the hazard is exposed. (Explain differently, this is confusing. Hazardous machine movement is prevented when the shield is opened) When an interlocked shield is opened or closed, a tripping mechanism automatically shuts off the power to disengage operations. The machine cannot cycle or be started until the shield is back in place. (Maybe wrap all three previous sentences into one statement. Sounds odd and non-technical)

Modern machines rely on electrical interlocks since they are already fitted with an electrical control system. The interlock is connected to the safety circuit of the machine and will prevent machine start-ups when the shield is swung open, even if the power switch is “ON”. It is only after the shield is closed that the machine can be restarted and normal operation resumed. Switches and sensors connected to these systems can be something as simple as a micro-switch or a reed switch, or as complex as a non-contact sensor with an electromagnetic locking device. Non-contact interlocking devices available today use coded RF signals or RF ID technologies to ensure that the interlock cannot be defeated by simple measures, like taping a magnet to a rA safety relay will monitor the interlock switch for failure, providing a notification if the interlock has been removed or is not functioning correctly.

Impact resistance
It goes without saying that Aa transparent shield needs to be highly impact resistant, along with providing an unobstructed and undistorted view. Impact resistance of a material can be measured in different ways, and the test method varies depending on the material being evaluated. In the United States, the notched Izod impact resistance test, as outlined in ASTM D256, is a common method of measuring the toughness of a plastic material.

It is important to note that increasing the thickness of a shield beyond a certain level does not always improve or increase impact resistance. A shield made of tougher material can be down-gauged to be thinner — and, therefore, more cost-effective — than one made from a more brittle material while still offering the same or superior level of protection for operators. Not sure the impact resistance data belongs in this article.

Innovations
Having lain dormant for decades, innovation has finally come to the safety shield business. Companies are bringing new materials and features to the product category that are enhancing operator safety yet making it less expensive for machine shops to be fully compliant with regulations.

An example of this new problem-solving advancement is the incorporation of bright LED lighting into the shield frame to yield higher visibility of the work area. Operators have often complained that shields limit visibility because of reflectivity or obstruction. Unlike an incandescent, LED lighting is not-reflective, cool and renders true colors. Besides the white lighting illuminating the work area while in operational mode, different LED colors can be programmed to act as visual indicators.

For example, when the shield is moved out of the safe work position, the white LED can switch off automatically and red LED can switch on to warn the operator. If you plan to purchase a shield with an LED be aware that the lighting must be manufactured to exacting IEC IP65 outdoor/wet locations standards to withstand splashes of coolant and lubricant from the machine.

Another innovation is modularity. Different machines require different shields, and one size rarely fits all. Shield manufacturers have embraced the modular design concept so that shield shape, size, mount, arm, offset, lighting, interlocking and safety monitoring can be configured to engineer the best solution for even the most unique challenge.. Available today are various mounting options, including opposite-hand mounting scenarios for left-handed operators. Left handed or not, handles for drills, mills, boring machines, etc are located on the right side of most machines. Opposite side mounting locations are selected based on available machine frame surface and/or other obstructions on a machine. Shields are vertically and horizontally adjustable to clear varying work setups and table heights.

Finally, there is the issue of operators bypassing shields, either by pushing them out of the way or tampering with the equipment.

Tamper-resistant interlock enclosures (switches) and redundant safety monitoring (monitoring does nothing for preventing tampering) go a long way towards stopping bypassing. However, a quality shield that doesn’t interfere with operation of a machine is a better answer. A shield defeats its purpose if it impedes a worker from performing a job quickly and comfortably. When properly installed and designed for a specific machine, a shield will actually enhance efficiency because it will relieve apprehensions about an injury.

Learn about Rockford Systems’ line of PROTECTOR Series Shields offering the highest level of safety on the market.

SAFETY IN NUMBERS: Stop Time Measurements

Stop-Time Measurements Keep Safeguarding Equipment in Peak Performance

We’ve all heard the phrase “what a difference a day makes,” yet when it comes to industrial safeguarding, the concern isn’t days, hours or even minutes. It is the milliseconds it takes for a machine operation to stop. That fraction of a second can make the difference between a life-changing injury or a safe machine cycle, the difference between a valued employee going home or being taken to the emergency room.

How can we assure the right outcome? How do we determine if a machine will stop in time?

The answer is specialized equipment called “Stop-Time Measurement” devices (STM). An STM is used to determine the total response time from the triggering of a machine’s operating control or a safeguarding device… to the exact moment when a dangerous movement comes to a halt. Take, for example, the time it takes for a press brake cycle to stop when a finger or hand enters the point-of-operation zone, or the time between when a light curtain is activated and when the machine comes to a complete standstill.

Once the stop-time data is captured by an STM in either milliseconds or inches, it is applied to an established formula to calculate the minimum safety distance required to install safety devices. A record of the measurement can be printed out, or alternatively, the device can be plugged into a PC where the measurements can be recorded and documented.

Doing the Math
According to OSHA, the majority of machine-related accidents happen as a result of a reflex action or when the operator is not paying attention. For example, a machine operator may instinctively reach into the machine when there is an issue. Or they will be so focused on a task that they’ll cross the threshold into a hazardous area without being aware of it. In these events, it is critical that a machine’s safety devices stop operations before the hazard is reached. In addition, accidents may not be the fault of the operator at all. There are instances where integrators do not program the field of coverage — the area being monitored by the light curtain, for instance — at the proper safety distance and puts the operator unknowingly at danger.

So what is the correct distance? The basic calculation for ‘safety distance’ comprises approach speed, overall stop time and penetration depth factor.

The standard formula is below:
DS = K (T) + DPF
where:
DS = the safety distance
K = the maximum speed that an individual can approach the hazard
T = the total time to stop the hazardous motion
DPF = the depth penetration factor of the safeguarding device

There are other variations on this calculation; for example, where a light curtain is in operation, the calculation requires both the resolution and the response time of the light curtain to be factored. Most STM devices perform calculations internally so the operator doesn’t need to concern themselves with all the details of the math, only the results to act upon.

In the United States there are two formulas that are used to properly calculate the safety distance. The first, the OSHA formula, is the minimum requirement for the calculation of the safety distance. The second is the ANSI formula, which incorporates additional factors to be considered when calculating the safety distance. Rockford Systems recommends the use of the ANSI system since it is the more comprehensive of the two. The formula is included in ANSI standards B11.19-2010 and Robotic Industries Association (RIA) R15.06-1999 (R2009), as well as CSA Z142-10, Z432-04 and Z434-03.

Stop-Time Measurement Service
For all linear and rotating motion equipment, Rockford Systems offers STM service for newly installed safety devices as well as for the periodic validation of existing safety devices. Periodic safety distance validation with an STM is required for AOPD systems, light curtains, 2-hand control systems, emergency stop devices, pressure-sensitive protective strips or mats, interlocking guards, doors and gates, as well as other safety devices and controls equipment used during production. This is necessary since factors like maintenance, brake wear, and alterations can increase the machine’s stopping time. If a machine stops slower than it did when it was originally commissioned then components will need to be adjusted to continue providing the correct level of safety. Stop time measurement is able to detect changes at an early stage, so that appropriate action can then be taken. For these and other reasons it is important to perform at least an annual stop time analysis. Rockford Systems STM services are mainly employed on reciprocating (stroking or cycling) machines, such as mechanical or hydraulic presses and press brakes, but can also be used on machines that rotate, such as lathes, mills, and drills.

Location of a safety component, whether hard guarding or electronic, is based upon the machine’s stopping time. Simply stated, a safety component should be placed far enough away from the risk area that it is not possible to reach the hazard before the machine has stopped. Safety devices are then installed using the minimum safe distance. Reference our OSHA Safety Distance Guide Slide Chart.

Regularly checking shop machinery with Stop-Time Measurements and maintaining a log of the results empowers a company to be proactive in establishing a safety maintenance program. It ensures that safeguarding equipment on machinery works as designed to achieve greater worker safety, productivity and profits.

Lack of Machine Guarding Again Named to OSHA’S Top 10 Most Cited Violations List

Every year around this time, the awards season kicks off with the Emmys, Golden Globes and the grand daddy of them all, the Oscars, eagerly announcing their lists of nominations. At the same time — and on a far more somber note — another roll call is issued, this one from the Occupational Safety & Health Administration (OSHA). Unlike Hollywood’s awards celebrations, however, no one wants to be nominated for OSHA’s Top Ten Most Cited Violations list, let alone take home the top prize.

OSHA revealed its 2017 Top 10 list at the National Safety Congress & Expo in the Indiana Convention Center. The top ten are:

1. Fall Protection – (1926.501): 6,072 violations
2. Hazard Communication (1910.1200): 4,176 violations
3. Scaffolding (1926.451): 3,288 violations
4. Respiratory Protection (1910.134): 3,097 violations
5. Lockout/Tagout (1910.147): 2,877 violations
6. Ladders (1926.1053): 2,241 violations
7. Powered Industrial Trucks (1910.178): 2,162 violations
8. Machine Guarding (1910.212): 1,933 violations
9. Fall Protection – Training Requirements: 1,523 violations
10. Electrical – Wiring Methods (1910.305): 1,405 violations

While reviewing the list, it is important to remain aware that the Federal Occupational Safety & Health Administration (OSHA) is a small agency. When tallied up to include its state partners, OSHA only has 2,100 inspectors who responsible for the health and safety of 130 million American workers, employed at more than 8 million work sites. This translates to about one compliance officer for every 59,000 workers. As a result, some serious injuries are not reported and thousands of potential violations go without citation or fines. In fact, numerous studies have shown that government counts of occupational injury are underestimated by as much as 50 percent. Employers are required to record all injuries meeting the OSHA’s ‘recordable injury’ criteria (except minor first-aid cases) on the OSHA 300 Log, and those meeting the ‘reportable’ criteria (e.g., hospitalizations or deaths), are to be reported to OSHA immediately, or within 24 hours of occurrence, as per the criteria defined in 29 CFR 1904. But it doesn’t mean all of them do.

MACHINE (UN)SAFEGUARDING IN TOP 10 MOST CITED VIOLATIONS
The absence of required machine safeguarding remains a perennial member of OSHA’s Top 10 Most Cited Violations, and 2017 was no exception. It was named number eight on the list with a total of 1,933 violations. These violations refer to OSHA 1910.212 for failing to have machines and equipment adequately guarded. Any machine part, function, or process that might cause injury should be safeguarded. When the operation of a machine may result in a contact injury to the operator or others in the area, the hazard should be removed or controlled.

A lack of machine safeguarding also held the dubious distinction of making the list of OSHA’s ten largest monetary penalties for the year — not once but four times. In fact, the largest proposed monetary penalty, a staggering $2.6 million (USD), arose from an incident where a worker was crushed to death while clearing a sensor fault in a robotic conveyor belt. OSHA alleges that the company failed to use energy control procedures to prevent robotic machinery from starting during maintenance. The manufacturer also was cited for exposing employees to crushing and amputation hazards as a result of improper machine guarding, plus failing to provide safety locks to isolate hazardous energy.

Despite these headline fines, the repercussions for employers putting workers in harm’s way remain small under the 1970 Occupational Safety and Health Act. The average federal fine for a serious workplace safety violation was $2,402 in fiscal year 2016, according to the most recent report by the AFL-CIO. And the median penalty for killing a worker was $6,500.

According to the most recent Bureau of Labor Statistics data, manufacturing plants reported approximately 2,000 accidents that led to workers suffering crushed fingers or hands, or had a limb amputated in machine-related accidents. The rate of amputations in manufacturing was more than twice as much (1.7 per 10,000 full-time employees) as that of all private industry (0.7). The bulk of these accidents occurred while removing jammed objects from a machine, cleaning or repairing the machine, or performing basic maintenance. These injuries were all largely preventable by following basic machine safeguarding precautions. Rockford Systems is committed to helping organizations reduce injuries and fatalities due to a lack of or non-compliant machine safeguarding. By creating a culture of safety in the workplace, Rockford Systems can help plant managers significantly reduce the number of on-the-job injuries and fatalities that occur annually, plus guard against hefty fines, lost production and increased insurance premiums.

Which leads to the question… “Where do we begin?”

TRAINING AND EDUCATION

Ignorantia juris non excusat (“ignorance of the law excuses not”). Recognizing that education is key to safety, Rockford Systems has offered its Machine Safeguarding Seminars for more than two decades. Thousands of safety professionals have attended the seminars from industries as diverse as aerospace and metal fabrication, to government and insurance.

Held ten times a year at our Rockford, Illinois headquarters, the 2.5 day seminars address key topics in safeguarding with a focus on OSHA 29 CFR and ANSI B-11 standards as they relate to specific machine applications and production requirements. Safeguarding equipment, both old and new, is not only explained in depth in the classroom, but demonstrated under power on the shop floor. Most of these machines are equipped with more than one type of safeguarding product so that attendees can see how different guards and devices can be applied.

Roger Harrison, Director of Training for Rockford Systems and an industrial safeguarding expert with over 25,000 hours of training experience, conducts the Machine Safeguarding Seminar.

>Another valuable educational resource is OSHA-10 General Industry and OSHA-30 General Industry training courses, both of which cover machine guarding. All of our training can be provided at your site, if preferred. To learn more about the Rockford Systems training curriculum, please visit https://www.rockfordsystems.com/seminars/

Rockford Systems also provides a variety of FREE machine safeguarding resources for your organization. Please visit our RESOURCES page to find videos, blogs, quick reference sheets, and more or visit our YouTube channel to download past webinar recordings.

ASSESSMENTS
If your organization is interested in safeguarding solutions, consider a Machine Risk Assessment or Machine Safeguarding Assessment as the critical first step in any machine guarding process as outlined in ANSI B11. Most assessments, but not all, follow the basic steps outlined below.

Step 1 – Provide Machine List
To get started, please provide Rockford Systems a list of all machines (manufacturer, model number, and machine description of each machine) to be assessed. This machine list is needed to determine the estimated resource requirement for the onsite audit. Upon receipt of your machine list, an Assessment Proposal will be provided, generally within 24 hours of receipt. Please email your machine list and any machine photos (optional) to sheryl.broers@rockfordsystems.com.

Step 2 – Schedule Onsite Visit
During the assessment, a machine safeguarding specialist will visit your site and conduct a complete audit of all machines identified on the list and evaluate their compliance in five guarding areas (Safeguards, Controls, Disconnects, Starters, and Covers). The assessment is based on OSHA 1910.212 General Requirements (a)(1), ANSI B11 Safety Standards for Metalworking, ANSI/RIA R15.06-2012 Safety Standards for Industrial Robots, and NFPA 79. If Rockford Systems, LLC has additional specific safeguarding requirements above and beyond OSHA 1910.212 and ANSI B11, please provide them before the site visit and we will incorporate them into the assessment.

Also, during the assessment, we may request copies of electrical, pneumatic and/or hydraulic schematics and operator manuals for specific machines. This information is needed for our Engineering Department to review the control circuit for electrical compatibility of equipment being offered, to verify control reliability of the control circuit, to determine interfacing requirements of suggested equipment. If requested, this information would be needed before advancing to Step 3 below.

Step 3 – Receive Compliance Report and Safeguarding Project Proposal
Upon completion of the assessment, a Compliance Report and Safeguarding Project Proposal will be provided to that identifies where each machine is in, or not in, compliance with the above stated regulations and standards. Where not in compliance, we will suggest guarding solutions to bring the machines into compliance, along with associated costs and timeframes.

We look forward to assisting your organization with its safeguarding needs. A team member will call you within 24 hours to further discuss your needs and applications. We are here to help businesses large and small address machine safety challenges and to remove the burden of managing the growing legal complexity of OSHA, ANSI and NFPA requirements from simple turnkey solutions to build-to-spec customized solutions.

Please contact sheryl.broers@rockfordsystems.com or call 1-815-874-3648 (direct) to get started on an assessment today.

PRODUCTS
If you are looking for Machine Safeguarding Products, please visit our PRODUCTS page that offers over 10,000 safeguarding solutions for drill presses, grinders, lathes, milling machines, press brakes, power presses, radial arm drills, riveters and welders, robots, sanders, saws and more.

RETURN ON INVESTMENT
Not sure if the investment in machine safeguarding provides a return on the investment (ROI), it absolutely does and we can help you calculate it. Please read our detailed blog post on this topic.

For more information on how avoid machine injuries and fatalities, please visit www.rockfordsystems.com.

Safeguarding Lathes

Lathes are often overlooked when Risk Assessments are conducted to determine appropriate “Machine Safeguarding.” OSHA regulations consider lathes to be a 1910.212 machine, saying to the employer, “One or more methods of machine guarding shall be provided to protect the operator and other employees in the machine area from hazards such as those created by point of operation, ingoing nip points, rotating parts, flying chips, and sparks” … but 1910.212 requirements are vague because they cover such a wide variety of machinery. Therefore, a reference to something more detailed, like ANSI B11.6 on metalworking lathes, is required for specific safeguarding alternatives.

From a practical standpoint, the rotating chuck (work-holder) cannot be fully enclosed, unlike gears, sprockets, or chains which can and usually are completely covered, often by the machine’s manufacturer. However, that same lathe manufacturer may provide no safeguarding at or near the point of operation.

Hinged chuck-shields are one of the most common methods to protect lathe operators from the rotating work-holder. Their purpose is to prevent an operator from inadvertently coming in contact with the chuck, which often results in entanglement with it, resulting in serious injury or even death. Chuck shields are commercially available from numerous providers. They may be constructed of metal, polycarbonate, or some combination of materials. When not in use, they need to be swung up out of the way, so most are hinged. Although U.S. Safety Standards and Regulations do not require chuck-shields to be electrically interlocked, some European manufacturers offer that feature. With electrically interlocked shields, when the lathe chuck shield is lifted up, the positive contacts on the microswitch open, sending a stop signal to the machine control. The machine will not start up again until the emergency stop button has been reset.

Another type of protection commonly used on lathes is a chip/coolant shield. These are often useful when the operator’s personal protective equipment (PPE) does not adequately control the waste product coming off of the cutting tool. If chips strike the operator in the upper body or accumulate on the floor creating a slip-trip hazard, a chip/coolant shield is often suggested to supplement the operator’s PPE. OSHA’s 1910.219 addresses the need to cover rotating components to prevent the operator’s hair and clothing from getting entangled, dragging them into the machine. These rotating components include the lead screw, feed rod, traverse rod, and camshaft, in the lower front portion of the lathe.

In April 2011, a lathe’s horizontal rotating components took the life of a 22-year old female student at Yale University’s Sterling Chemistry Laboratory. While working very late at night by herself, her hair became entangled in that part of the machine, resulting in asphyxiation. (Google; Yale Lathe Fatality)

Telescopic metal sleeves are available to cover a lathe’s horizontal rotating components, although many manufacturing companies elect not to use them. According to feedback from OSHA Compliance Officers and Insurance Loss Control Inspectors, one of the most common lathe accidents results from the misuse of the standard chuck wrench furnished by the lathe manufacturer.

When the lathe is not being used, a typical (unsafe) storage place for the chuck-wrench is in the chuck. At some point in time, the operator turns the lathe on without checking to see where the chuck wrench is located, which sends it flying. This has caused serious accidents, including the loss of eyes. Spring-loaded, self-ejecting chuck wrenches are a solution to this problem because they won’t stay in the chuck by themselves. They are available in a number of sizes.

Many older lathes also need updates to bring them up to code with electrical standards like NFPA 79. The two most common updates are for: 1) magnetic motor-starters to provide dropout protection, (a.k.a. anti-restart), and 2) main power disconnects that lock only in the OFF position. As with any machine, provision for Lockout/Tagout is always important.

Danger and Warning signs, depicting specific hazards on lathes are also available.

To see these and other lathe safeguarding products, please call 1-800-922-7533 or visit https://www.rockfordsystems.com/product/protector-series-shields/